<table>
<thead>
<tr>
<th>Sr No</th>
<th>Course code</th>
<th>Course name</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
<th>Total marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CE301T</td>
<td>Transportation Engineering - I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE301P</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>CE302T</td>
<td>Hydrology and Water Resources</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE303T</td>
<td>Environmental Engineering - II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE303P</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CE304T</td>
<td>Geotechnical Engineering - I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE304P</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>CE305T</td>
<td>Design of RCC Structures</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE306T</td>
<td>Urban and Rural Planning</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CE306P</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>CE 308P</td>
<td>Industrial Orientation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

MS- Mid semester; ES- End semester; IA-Internal assessment; LW-Laboratory work; LE-Laboratory exam
UNIT I
PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport, Road types and classification, road patterns, planning surveys, Indian Roads Congress Guidelines

UNIT II
HIGHWAY GEOMETRIC DESIGN: Ideal Alignment, Factors affecting the alignment, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements- Camber- width of pavement- Shoulders-, Width of formation- Right of way, Typical cross sections; Sight Distance-Restrictions to sight distance- Stopping sight distance- Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Super elevation – Extra widening- Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves

UNIT III
PAVEMENT MATERIALS: Sub grade soil – desirable properties-HRB soil classification-determination of CBR and modulus of sub grade reaction-Examples, Aggregates- Desirable properties and list of tests, Explanation on Tar, bitumen, cutback and emulsion-List of tests on bituminous materials; PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination, Flexible pavement-Design of flexible pavements as per IRC;37-2001-, Rigid pavement- Westergaard’s equations for load and temperature stresses- Design of slab thickness only as per IRC:58-2002

UNIT IV

Approximate Total 38 Hours

References:
3. Transportation Engineering – K P Subramaniam, Scitech Publications, Chenna
<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of Experiments:
1. To determine the elongation and flakiness index for an aggregate sample
2. To determine the Crushing value for an aggregate sample
3. To determine the Impact value for an aggregate sample
4. To determine the Abrasion value for an aggregate sample
5. To determine the water absorption of given coarse aggregates
6. To determine the ductility of a given sample of bitumen
7. To determine the suitability of bitumen for its use in road construction
8. To determine viscosity & specific gravity of given bituminous material
9. To determine consistency of bituminous material
10. To determine softening point, flash point, fire point of bituminous material
UNIT I
Hydrological cycle, rainfall, rainfall measurement, computation of mean rainfall, methods, infiltration, factors affecting infiltration, evaporation, runoff measurement, methods for runoff analysis, unit hydrograph, S-hydrograph

UNIT II
Groundwater, types of aquifers, confined and unconfined, storage coefficient, steady radial flow into a well, well hydraulics, Darcy’s equations, penetrating artesian wells, tube wells, open wells, advantages and disadvantages

UNIT III
River engineering, classification of rivers, rivers in alluvium plain, river meandering, methods of estimation of river meandering, river training works

UNIT IV

Approximate Total 38 Hours

References:
1. Hydrology and water resources engineering by S.K.Garg
2. Introduction to hydrology, W Viessman, GL Lewis, Pearson Education
3. Hydrology-Principle, analysis and design, HM Raghunath, New Age Publishers
UNIT I
Waste water treatment, sewage and effluent, sources of wastewater, classification of wastewater, pollutions, characteristics and testing of sewage, composition, sampling, physical and chemical analysis

UNIT II
Design of sewer systems: Domestic waste treatment, quantity of sewage, single and combined systems, design of sewer systems, provision for expansion, Testing of sewer line, cleaning of sewers, standards

UNIT III
Industrial waste treatment: objectives, significance of treatment, classification of treatment processes, wastewater treatment, operations, screenings, skimming, sedimentation, biological treatment, aerobic and anaerobic treatment, trickling filters and design, LRTF & HRTF, types and modifications, activated sludge process, modes of waste water disposal membranes

UNIT IV
Sewage treatment, principles, ETP design, Energy recovery from waste, sludge digesters and bio gas plants

Total Approximate 38 Hours

References:
2. Environmental engineering, HS Paevy, DR Rowe, G Tchobanoglous, McGraw Hill
4. Water supply and sanitation engineering, GS Birdie, JS Birdie, Galgotia Publishing Ltd.
<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Determination of DO in waste water.
2. Determination of BOD and COD in waste water.
3. Determination of Sulphate content in sewage.
4. Determination of total solids (Suspended, Dissolved, Volatile and Non-volatile)
5. Analysis of water quality, quantity parameters in a wastewater
6. Presumptive test for coliform bacteria.
8. Designing a filtration system
9. Designing a waste water distribution system
UNIT I
Fundamental definitions, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & submerged and their inter relationships

UNIT II
Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soils.

UNIT III
Permeability, Darcy’s law- assumption and validity, coefficient of permeability and its determination, factors affecting permeability, permeability of stratified soils, Seepage velocity, Superficial velocity and coefficient of percolation, quick sand phenomena, Capillary Phenomena, Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelops, Effective stress concept total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils

UNIT IV
Compaction, Standard and Modified proctor’s compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor’s needle, Compaction equipment

Consolidation: Definition, Terzaghi’s one dimensional consolidation theory-assumption and limitations, Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination, Consolidation characteristics of soil

Approximate Total 39 Hours

References:
3. Geotechnical Engineering; Braja, M. Das (2002), Fifth Edition, Thomson Business Information India (P) Ltd., India
International (P) Ltd., New Delhi.

7. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
10. Numerical Problems, Examples and objective questions in Geotechnical Engineering-
CE304P Geotechnical Engineering - I

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Determination of moisture content
2. Determination of specific gravity
3. Field density test
4. Determination of Relative Density
5. Determination of particle size (sieve analysis, hydrometer test)
6. Determination of consistency limits and indices
7. Standard proctor compaction test
8. Permeability test
9. Unconfined Compression Test
10. Vane Shear Test
<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT II</td>
<td>Flexural design: Analysis, design and detailing of rectangular & flanged beams, one-way & two way simply supported & continuous slabs, Flexural and shear design: Design and detailing of rectangular & flanged beams; Axial load design: Design and detailing of axially loaded Short columns Combined axial, shear and flexural design: Design and detailing of uniaxial & biaxial - Short & long columns; Torsion design: Design of rectangular beam section for torsion</td>
</tr>
<tr>
<td>UNIT III</td>
<td>Combined shear and torsion: Design of rectangular beam section, Shear, flexural, punching, torsion: Design of isolated footing and combined footing, Bond and development length: Checking bond & development length for bars under tension, compression, Combined axial, shear, flexure: Design and detailing of uniaxial & biaxial – Short & long columns. Design of flat slabs</td>
</tr>
<tr>
<td>UNIT IV</td>
<td>Axial force design: Tension member, compression member, Flexural design for beams: Restrained, unrestrained Combined axial and flexural design: Columns, Footing : slab based, gusseted base foundation, Torsion design and connections, Beams, columns, Combined axial, flexural and torsion: columns, Connections: Bolted – bearing type, Hsfg for seismic purpose, Welded: types of electrodes, Connection design for tension, compression, flexural, flexural + shear</td>
</tr>
</tbody>
</table>

IS CODES:
2. Code of practice for structural safety of Buildings IS : 875 Part I to V Loading standards.(revised)(with Amendment 1)

References:
1. Shah and Karve; Limit State theory & Design of Reinforced Concrete
2. A.K.Jain; Design of Concrete Structures, Nemchand Publication
UNIT I
Town Planning; Evolution of towns, rural and urban pattern of growth, factors promoting growth and development of rural-urban areas, History and trends in town planning, origin and growth, Historical development of town planning in ancient valley civilizations; Objects and necessary of town planning; Surveys and analysis of a town

UNIT II
New Concepts in town planning: Garden city movement, Linear city and Satellite city concepts, Neighborhood Planning; Planning Principles

UNIT III
Master Plan; Concepts of urban planning in India, case studies new town Gandhinagar, Jaipur, Chandigarh, design and landscaping for urban and rural areas, rural planning, concept of regional plans, physical planning of villages, standards and infrastructure requirements and planning

UNIT IV
Laws and practices on 73rd and 74th constitutional amendment act

Approximate Total 22 Hours

References:
1. GK Hiraskar, Town Planning in India, Dhanpat Rai and Sons New Delhi
2. N K Gandhi, Town Planning in India
<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Studio on development of a city plan
2. Studio on development of village plans, regional plans
3. Conducting survey on city infrastructure, socio-economic and development