COURSE STRUCTURE FOR M.TECH. ELECTRICAL ENGINEERING

SEMESTER I

w.e.f. 2013-2014

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Exam Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS</td>
<td>ES</td>
<td>IA</td>
</tr>
<tr>
<td>1</td>
<td>MA 503T</td>
<td>Advanced Numerical Techniques and Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EE 501</td>
<td>Advanced Electrical Machines</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EE 502</td>
<td>Advanced Power System Protection</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>EE 503</td>
<td>Modern Processors and Embedded Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EE 5xx</td>
<td>Department Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>EE 506</td>
<td>Laboratory-I</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>15</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

IA = Internal assessment (like quiz, assignments etc)
MS = Mid Semester, ES = End Semester; LW = Laboratory work; LE = Laboratory Exam

Department Electives:
1. EE 504 Finite Element Methods
2. EE 505 Renewable Energy Systems

March-April 2014
EE 501 Advanced Electrical Machines

Teaching Scheme

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Hrs/Week</th>
<th>Theory</th>
<th>Practical</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MS</td>
<td>ES</td>
<td>IA</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>--</td>
<td>6</td>
<td>3</td>
<td>30</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

UNIT I

INDUCTION GENERATORS: self excitation requirements, steady state analysis, voltage regulation, different methods of voltage control, application to mini and micro hydro systems.

DOUBLY FED INDUCTION MACHINES: control via static converter, power flow, voltage/frequency control (generation mode), application to grid connected wind and mini/micro hydro systems.

HIGH PERFORMANCE ENERGY EFFICIENT MACHINES: Technology of energy efficient motors, selection and application of energy efficient motors.

UNIT II

SWITCHED RELUCTANCE MOTOR: Construction, operating performance, control and applications.

UNIT III

BRUSHLESS DC MACHINES: construction operation, performance, control and applications.

LINEAR MACHINES: Linear Induction Machines and Linear Synchronous Machines. Construction, operation, performance, control and applications.

UNIT IV

PERMANENT MAGNET MATERIALS: Properties of different Permanent Magnet materials, B-H loop and demagnetization characteristics, temperature effects, mechanical properties, applications

APPLICATION OF PERMANENT MAGNETS IN ELECTRICAL MACHINE: structure, magnetic materials used, types of motors e.g. PMDC and PM Synchronous Machine, control and applications.

RECENT DEVELOPMENTS IN ELECTRICAL MACHINES

TOTAL HOURS 39

Texts and References:

3. Jacek Gierasewing, *P. M. motor technology*, Marcel Dekker
EE 502 Advanced Power System Protection

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

UNIT I

UNIT II

DISTANCE RELAYING: Introduction, Transmission Line Protection, Distance Protection, Reach of Distance Relay, Selection of Measuring Unit, current and Voltage Connections, Problems & Remedies in Distance Protection (Close-in fault, Fault Resistance, Remote In-feed, Mutual Coupling, Series Compensated Transmission Lines, Power Swing, Overload, Transient Condition), Examples on Setting of Distance Protection, Symmetrical Component Based Distance Relay, Digital Distance Relaying Scheme

PILOT RELAYING SCHEMES FOR TRANSMISSION LINE: Introduction to Pilot Protection System, Circulating Current Based Wire Plot Relaying Scheme, Carrier Current Protection Scheme (Phase Comparison Scheme, Directional Comparison Scheme, Blocking and Unblocking Carrier aided Distance Scheme, Carrier Blocking Scheme, Carrier Unblocking Scheme, Transfer Tripping Carrier aided Distance Scheme, Under Reach Transfer Tripping Scheme, Over Reach Transfer Tripping Scheme)

UNIT III

PROTECTION AGAINST TRANSIENTS AND SURGES: Introduction, Sources of Transients or Surges in EHV Line, Switching of Transmission Line, Switching of Capacitor Bank, Switching of Coupling Capacitor Voltage Transformer (CCVT), Switching of Reactor, Arcing Ground, Lightning Strokes, Overvoltage Phenomenon due to Lightning and Switching, Surges and Travelling Waves, Wave

UNIT IV

AUTORECLOSING AND SYNCHRONIZING & SYSTEM RESPONSE TO SEVERE UPSETS:
Introduction, History of autoreclosing, Advantages of Autoreclosing, Classification of autoreclosing Relay, Autoreclosing based on number of phases, Autoreclosing based on number of attempts, Autoreclosing based on speed, Sequence of Events of a Typical Single-shot Autoreclosing Scheme, Factors to be considered during Reclosing(Choice of zone in case of distance relay, Dead time/Deionizing time, Reclaim Time, Instantaneous Lock out, Intermediate Lock Out, Breaker supervision function), Synchronism Check(Phasing Voltage Method, Angular Method, Automatic Synchronizing)

SYSTEM RESPONSE TO SEVERE UPSETS: Introduction, Nature of system response to severe upsets, System Response to Islanding Conditions (Undergenerated Islands, Overgenerated Islands, Reactive Power Balance, Power Plant Auxiliaries, Power System Restoration), Load Shedding, Factors to be considered for Load Shedding Scheme(Maximum Anticipated Overload, Number of Load Shedding Steps, Size of Load Shed at Each Step, Frequency Setting, Time Delay), Rate of Frequency Decline, Frequency Relays, Islanding(Issues with Islanding, Methods of Islanding Detection)

Texts and References:
5. J. J. Blackburn, “Protective Relaying Fundamentals”, John Wiley and Sons
EE 503 Modern Processors and Embedded Systems

Teaching Scheme

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Hrs/Week</th>
<th>Theory</th>
<th>Practical</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MS</td>
<td>ES</td>
<td>IA</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>--</td>
<td>6</td>
<td>3</td>
<td>30</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

Examination Scheme

UNIT I

Introduction to Embedded Systems: Typical Embedded System, Introductions to architectures of various microcontrollers and microprocessors, Characteristics and Quality Attributes of Embedded Systems.

UNIT II

ARM 9 Processors: Architecture of Arm 9 Embedded Processors, Instruction Set, Thumb Instruction Set Extension, Programming of 32 Bit ARM 9 Processor.

UNIT III

Interfaces: Memory and I/O, Communication Interfaces like I2C BUS, CAN BUS, SPI BUS, UART, 1-Wire etc In Embedded Systems.

UNIT IV

TOTAL HOURS 39

Text and References:

7. *Internet References*
 - www.arm.com
EE 507 Modern Control Systems

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

UNIT I

ANALYSIS OF CONTROL SYSTEMS IN STATE SPACE: Concept of state and state space, state and output equations, state variable representations, canonical realizations, solution of state equations, Concepts of controllability and observability.

UNIT II

STATE VARIABLE ANALYSIS OF DIGITAL CONTROL SYSTEMS: Discretisation of continuous time state equation, discrete time state equations, solution of discrete state space equations, Controllability to the origin and reachability.

UNIT III

DESIGN OF MODERN CONTROL SYSTEMS: Pole placement design through state feedback, stability improvement by state feedback, state regulator design, Design of state observer and state estimator, Quadratic optimal regulator design, Model predictive control design.

TOTAL HOURS 39

Text and References:

7. B.C.Kuo, "Automatic Control System".
Department Elective
EE505 RENEWABLE ENERGY SYSTEMS

Teaching Scheme

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Hrs/Week</th>
<th>MS</th>
<th>ES</th>
<th>IA</th>
<th>LW</th>
<th>LE/Viva</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>--</td>
<td>6</td>
<td>3</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
</tbody>
</table>

Examination Scheme

UNIT I
INTRODUCTION: World energy use, Reserves of energy resources, Environmental aspects of energy utilization, Renewable energy scenario in India, Potentials, Achievements, Applications, Concept of energy conservations.

UNIT II

UNIT III
WIND ENERGY: Wind data and energy estimation, Betz limit, Basic components of wind electric system, Types of Wind energy conversion devices (Dutch windmills, Mutli-bladed water pumping windmills, High speed propeller type wind machines), Principle of Lift and Drag force on aerofoil (Basics of Aerodynamics), Design of Wind turbine rotor, Power Speed Characteristics, Power torque characteristics, Concept of Savonius and Darrious rotors, Types of wind energy systems, Performance and calculations, Details of wind turbine generator, Comparison of Wind generators, Wind turbine control system (pitch, stall and yaw controls).

UNIT IV
BIOMASS ENERGY: Biomass direct combustion, Biomass gasifier, Biogas plant, Ethanol production, Bio diesel, Cogeneration, Biomass applications

OTHER RENEWABLE ENERGY SOURCES: Tidal energy, Wave energy, Open and closed OTEC Cycles, Small hydro, Geothermal energy, Fuel cell systems

TOTAL HOURS 39

Text and References:

March-April 2014